5,049 research outputs found

    Dark energy survey year 3 results: deep field optical + near-infrared images and catalogue

    Full text link
    Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiere, y los autores pertenecientes a la UAMWe describe the Dark Energy Survey (DES) Deep Fields, a set of images and associated multiwavelength catalogue (ugrizJHKs) built from Dark Energy Camera (DECam) and Visible and Infrared Survey Telescope for Astronomy (VISTA) data. The DES Deep Fields comprise 11 fields (10 DES supernova fields plus COSMOS), with a total area of ∼30 sq. deg. in ugriz bands and reaching a maximum i-band depth of 26.75 (AB, 10σ, 2 arcsec). We present a catalogue for the DES 3-yr cosmology analysis of those four fields with full 8-band coverage, totalling 5.88 sq. deg. after masking. Numbering 2.8 million objects (1.6 million post-masking), our catalogue is drawn from images coadded to consistent depths of r = 25.7, i = 25, and z = 24.3 mag. We use a new model-fitting code, built upon established methods, to deblend sources and ensure consistent colours across the u-band to Ks-band wavelength range. We further detail the tight control we maintain over the point-spread function modelling required for the model fitting, astrometry and consistency of photometry between the four fields. The catalogue allows us to perform a careful star-galaxy separation and produces excellent photometric redshift performance (NMAD = 0.023 at i < 23). The Deep-Fields catalogue will be made available as part of the cosmology data products release, following the completion of the DES 3-yr weak lensing and galaxy clustering cosmology wor

    Moving Forward 21st Century Pathways to Strengthen the Ocean Science Workforce Through Graduate Education and Professional Development

    Get PDF
    The scope of emerging national and international ocean-related issues facing society demands that we develop broad perspectives on graduate education and training in the ocean sciences. A multifaceted ocean workforce and new kinds of intellectual partnerships are needed to address ocean science research priorities, strengthen our understanding of coupled human-natural ocean systems, engage and inform public policy and management decision making, and increase ocean literacy. Alumni from graduate programs in ocean sciences are following diverse career paths in academia, government, nongovernmental organizations, and industry, and thus can inform us about the diverse skills needed to succeed. The ocean science academic community should build on its current strengths (e.g., multidisciplinary and multi-institutional research and education, international partnerships), and capitalize on what some might view as limitations (e.g., remote, yet inviting, coastal campuses, diversity of ocean science programs), to become an incubator of innovation that will advance the field and strengthen graduate education and training. Partnerships within and among institutions with ocean-related programs, and with professional societies, employers, and others, can help us provide cutting-edge, relevant academic options, facilitate professional development, and proactively position graduates for career paths that reflect and address important societal needs

    Galactic conformity and central/satellite quenching, from the satellite profiles of M* galaxies at 0.4 < z < 1.9 in the UKIDSS UDS

    Get PDF
    We explore the redshift evolution of a curious correlation between the star formation properties of central galaxies and their satellites (‘galactic conformity') at intermediate to high redshift (0.4 9.7, around central galaxies at the characteristic Schechter function mass, M ∼ M*. We fit the radial profiles of satellite number densities with simple power laws, finding slopes in the range −1.1 to −1.4 for mass-selected satellites, and −1.3 to −1.6 for passive satellites. We confirm the tendency for passive satellites to be preferentially located around passive central galaxies at 3σ significance and show that it exists to at least z ∼ 2. Meanwhile, the quenched fraction of satellites around star-forming galaxies is consistent with field galaxies of equal stellar masses. We find no convincing evidence for a redshift-dependent evolution of these trends. One simple interpretation of these results is that only passive central galaxies occupy an environment that is capable of independently shutting off star formation in satellite galaxies. By examining the satellites of higher stellar mass star-forming galaxies (log(M*/M⊙) > 11), we conclude that the origin of galactic conformity is unlikely to be exclusively due to the host dark matter halo mass. A halo-mass-independent correlation could be established by either formation bias or a more physical connection between central and satellite star formation histories. For the latter, we argue that a star formation (or active galactic nucleus) related outburst event from the central galaxy could establish a hot halo environment which is then capable of quenching both central and satellite galaxie

    Nature versus Nurture: The curved spine of the galaxy cluster X-ray luminosity -- temperature relation

    Get PDF
    The physical processes that define the spine of the galaxy cluster X-ray luminosity -- temperature (L-T) relation are investigated using a large hydrodynamical simulation of the Universe. This simulation models the same volume and phases as the Millennium Simulation and has a linear extent of 500 h^{-1} Mpc. We demonstrate that mergers typically boost a cluster along but also slightly below the L-T relation. Due to this boost we expect that all of the very brightest clusters will be near the peak of a merger. Objects from near the top of the L-T relation tend to have assembled much of their mass earlier than an average halo of similar final mass. Conversely, objects from the bottom of the relation are often experiencing an ongoing or recent merger.Comment: 8 pages, 7 figures, submitted to MNRA

    Developing an On-Line Interactive Health Psychology Module.

    Get PDF
    On-line teaching material in health psychology was developed which ensured a range of students could access appropriate material for their course and level of study. This material has been developed around the concept of smaller 'content chunks' which can be combined into whole units of learning (topics), and ultimately, a module. On the basis of the underlying philosophy that the medium is part of the message, we considered interactivity to be a key element in engaging the student with the material. Consequently, the key aim of this development was to stimulate and engage students, promoting better involvement with the academic material, and hence better learning. It was hoped that this was achieved through the development of material including linked programmes and supporting material, small Java Scripts and basic email, forms and HTML additions. This material is outlined as are some of the interactive activities introduced, and the preliminary student and tutor experience described

    Scholarly communication in transition: The use of question marks in the titles of scientific articles in medicine, life sciences and physics 1966–2005

    Get PDF
    The titles of scientific articles have a special significance. We examined nearly 20 million scientific articles and recorded the development of articles with a question mark at the end of their titles over the last 40 years. Our study was confined to the disciplines of physics, life sciences and medicine, where we found a significant increase from 50% to more than 200% in the number of articles with question-mark titles. We looked at the principle functions and structure of the titles of scientific papers, and we assume that marketing aspects are one of the decisive factors behind the growing usage of question-mark titles in scientific articles

    The role of mass and environment in the build up of the quenched galaxy population since cosmic noon

    Get PDF
    We conduct the first study of how the relative quenching probability of galaxies depends on environment over the redshift range 0.5<z<30.5 < z < 3, using data from the UKIDSS Ultra-Deep Survey. By constructing the stellar mass functions for quiescent and post-starburst (PSB) galaxies in high, medium and low density environments to z=3z = 3, we find an excess of quenched galaxies in dense environments out to at least z2z \sim 2. Using the growth rate in the number of quenched galaxies, combined with the star-forming galaxy mass function, we calculate the probability that a given star-forming galaxy is quenched per unit time. We find a significantly higher quenching rate in dense environments (at a given stellar mass) at all redshifts. Massive galaxies (M>1010.7_* > 10^{10.7} M_{\odot}) are on average 1.7 ±\pm 0.2 times more likely to quench per Gyr in the densest third of environments compared to the sparsest third. Finally, we compare the quiescent galaxy growth rate to the rate at which galaxies pass through a PSB phase. Assuming a visibility timescale of 500 Myr, we find that the PSB route can explain \sim 50\% of the growth in the quiescent population at high stellar mass (M>1010.7_* > 10^{10.7} M_{\odot}) in the redshift range 0.5<z<30.5 < z < 3, and potentially all of the growth at lower stellar masses.Comment: 12 pages, 8 figures. Accepted for publication in MNRA
    corecore